Quiz 9 Chemical Engineering Thermodynamics April 2, 2015

P8.7 Ethylene at 350°C and 50 bar is passed through an adiabatic expander to obtain work and exits at 2 bar. If the expander has an efficiency of 80%, how much work is obtained per mole of ethylene, and what is the final temperature of the ethylene? How does the final temperature compare with what would be expected from a reversible expander?

See equations below

T (K) 623.15	Z	٧	Н	U	S
P (MPa) 5		cm3/g	mol J/m	ol J/mol	J/molK
& for 1 root region 0.98		6361 1022	.041 18	750.12 1363	39.92 9.1954
Г(K) 404.71	Z	V	н	U	S
P (MPa) 0.2		cm3/g	mol J/m	ol J/mol	J/molK
& for 1 root region 0.9		9499 1673	9.56 52	34.912	1887 9.195 4
T (K) 452.012672		fugacity	н	U	S
P (MPa)	0.2	MPa	J/mol	J/mol	J/molK
answers for three		#NUM!	#NUM!	#NUM!	#NUM!
root region					
		#NUM!	#NUM!	#NUM!	#NUM!
& for 1 root region				•	

2)

8.10 Derive the integrated formula for the Helmholtz energy departure for the virial equation (Eqn. 7.7), where *B* is dependent on temperature only. Express your answer in terms of *B* and its temperature derivative.

Equation 7.7 given below with other useful expressions.

3)

9.1 The heat of fusion for the ice-water phase transition is 335 kJ/kg at 0°C and 1 bar. The density of water is 1g/cm³ at these conditions and that of ice is 0.915 g/cm³. Develop an expression for the change of the melting temperature of ice as a function of pressure. Quantitatively explain why ice skates slide along the surface of ice for a 100 kg hockey player wearing 10 cm x 01 cm blades. Can it get too cold to ice skate? Would it be possible to ice skate on other materials such as solid CO₂?

See equations below.

$$\frac{(S - S^{ig})}{R} = \int_{0}^{\rho} \left[-T \left[\frac{\partial Z}{\partial T} \right] - (Z - 1) \right] \frac{d\rho}{\rho} + \ln Z$$
 8.23

$$\frac{(H - H^{ig})}{RT} = \int_{0}^{\rho} -T \left[\frac{\partial Z}{\partial T} \right]_{\rho} \frac{d\rho}{\rho} + Z - 1$$
8.24

$$\frac{(A-A^{ig})}{RT} = \int_{0}^{\rho} \frac{(Z-1)}{\rho} d\rho - \ln Z$$
 8.25

$$\frac{(G - G^{ig})}{RT} = \int_{0}^{\rho} \frac{(Z - 1)}{\rho} d\rho + (Z - 1) - \ln Z$$
 8.26

Useful formulas at fixed T,V include:

$$\frac{(A-A^{ig})_{TV}}{RT} = \int_{0}^{\rho} \frac{(Z-1)}{\rho} d\rho$$

$$8.27$$

$$\frac{(S-S^{ig})_{TV}}{R} = \int_{0}^{\rho} \left[-T \left[\frac{\partial Z}{\partial T} \right]_{\rho} - (Z-1) \right] \frac{d\rho}{\rho}$$
 8.28

$$\left(\frac{H - H^{ig}}{RT}\right) = -\int_{0}^{P} T \left(\frac{\partial Z}{\partial T}\right)_{P} \frac{dP}{P}$$
8.29

$$\left(\frac{S - S^{ig}}{R}\right) = -\int_{0}^{P} \left[(Z - 1) + T \left(\frac{\partial Z}{\partial T}\right)_{P} \right] \frac{dP}{P}$$
8.30

$$\frac{A = U - TS = H - PV - TS}{\frac{(A - A^{ig})}{RT}} = \frac{(H - H^{ig})}{RT} - \frac{(S - S^{ig})}{R} - Z + 1$$

$$\frac{dP^{sat}}{dT} = \frac{\Delta H^{vap}}{T(V^V - V^L)}$$

Qualitical Clapeyror equation.

$$S^V - S^L = \Delta S^{vap} = \frac{(H^V - H^L)}{T} = \frac{\Delta H^{vap}}{T}$$

9.5

$$d\ln P^{sat} = \frac{-\Delta H^{vap}}{R(Z^V - Z^L)} d\left(\frac{1}{T}\right)$$

9.7

$$d \ln P^{sat} = \frac{-\Delta H^{vap}}{R} d \left(\frac{1}{T}\right)$$

(ig) 9.8

$$Z = 1 + (B^0 + \omega B^1)P_r/T_r$$
 or $Z = 1 + BP/RT$ 7.6

where
$$B(T) = (B^0 + \omega B^1)RT_c/P_c$$

$$B^1 = 0.139 - 0.172/T_r^{4.2}$$

7.7

Subject to
$$T_r > 0.686 + 0.439P_r$$
 or $V_r > 2.0$

 $B^0 = 0.083 - 0.422/T_r^{1.6}$

7.10

 $R = 8.314 \text{ MPa cm}^3/(\text{mole } K^{\circ})$

Answers Quiz 9 Chemical Engineering Thermodynamics April 2, 2015

1)
P8.7 Ethylene at 350°C and 50 bar is passed through an adiabatic expander to obtain work and exits at 2 bar. If the expander has an efficiency of 80%, how much work is obtained per mole of ethylene, and what is the final temperature of the ethylene? How does the final temperature compare with what would be expected from a reversible expander?

See equations below and PREOS.xlsx outputs.

(P8.7)

$$T_1 = 623.15K$$

 $P_1 = 5MPa$
Use PREOS.XLS
 $S_1 = S_2'$

T (K)	623.15	Z '	V	Н	U	S
P (MPa)	5	(cm3/gmol	J/mol	J/mol	J/molK
& for 1 root	region	0.986361	1022.041	18750.12	13639.92	9.1954

 \Rightarrow Use Solver in the spread sheet by changing pressure to 0.2MPa and Fixing the entropy value = 9.1954J/mol-K and in this case $S_1 = S_2' = 9.1954 J/mol$ e-K then we can find $\Delta H'$ and ΔH

T (K)	404.71 Z	. '	V	н	U		S
P (MPa)	0.2		cm3/gmol	J/mol	J/mol		J/molK
& for 1 root	region	0.99499	16739.56	5234.9	12	1887	9.1954

$$\Rightarrow T = 404.71K$$

$$\Delta H' = 5234.912 - 18750.12 = -13515.21J / mole$$

$$\eta = 0.8 \Rightarrow \frac{\Delta H}{\Delta H'} = 0.8 = \frac{W_s}{W_s'} = \frac{H_2 - H_1}{H_2' - H_1}$$

$$\Rightarrow 0.8 = \frac{H_2 - 18750.12}{5234.912 - 18750.12}$$

$$\Rightarrow H_2 = 7937.95J / mol$$

$$\Rightarrow \Delta H = H_2 - H_1 = 7937.95 - 18750.12$$

$$\Rightarrow T_2 = 452K$$

 $\Rightarrow \Delta H = 10812.166 J/mol$

2)

8.10 Derive the integrated formula for the Helmholtz energy departure for the virial equation (Eqn. 7.7), where *B* is dependent on temperature only. Express your answer in terms of *B* and its temperature derivative.

Equation 7.7 given below with other useful expressions.

(8.10) Derive the integrated formula for the Helmholtz energy departure ... Solution:

$$\frac{A = U - TS = H - PV - TS}{(A - A^{ig})} = \frac{(H - H^{ig})}{RT} - \frac{(S - S^{ig})}{R} - Z + 1$$

Using the form for
$$Z = Z(T,P)$$
:
$$\int_0^P \frac{(Z-1)}{P} dP - Z + 1 = \frac{BP}{RT} - \frac{BP}{RT} = 0$$

3)

9.1 The heat of fusion for the ice-water phase transition is 335 kJ/kg at 0°C and 1 bar. The density of water is 1g/cm³ at these conditions and that of ice is 0.915 g/cm³. Develop an expression for the change of the melting temperature of ice as a function of pressure. Quantitatively explain why ice skates slide along the surface of ice for a 100 kg hockey player wearing 10 cm x 01 cm blades. Can it get too cold to ice skate? Would it be possible to ice skate on other materials such as solid CO₂?

